2000 character limit reached
Magnetic Schrödinger operators and landscape functions (2210.02646v1)
Published 6 Oct 2022 in math.AP, cs.NA, and math.NA
Abstract: We study localization properties of low-lying eigenfunctions of magnetic Schr\"odinger operators $$\frac{1}{2} \left(- i\nabla - A(x)\right)2 \phi + V(x) \phi = \lambda \phi,$$ where $V:\Omega \rightarrow \mathbb{R}_{\geq 0}$ is a given potential and $A:\Omega \rightarrow \mathbb{R}d$ induces a magnetic field. We extend the Filoche-Mayboroda inequality and prove a refined inequality in the magnetic setting which can predict the points where low-energy eigenfunctions are localized. This result is new even in the case of vanishing magnetic field. Numerical examples illustrate the results.