Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Reading Chinese in Natural Scenes with a Bag-of-Radicals Prior (2210.02576v1)

Published 5 Oct 2022 in cs.CV and cs.AI

Abstract: Scene text recognition (STR) on Latin datasets has been extensively studied in recent years, and state-of-the-art (SOTA) models often reach high accuracy. However, the performance on non-Latin transcripts, such as Chinese, is not satisfactory. In this paper, we collect six open-source Chinese STR datasets and evaluate a series of classic methods performing well on Latin datasets, finding a significant performance drop. To improve the performance on Chinese datasets, we propose a novel radical-embedding (RE) representation to utilize the ideographic descriptions of Chinese characters. The ideographic descriptions of Chinese characters are firstly converted to bags of radicals and then fused with learnable character embeddings by a character-vector-fusion-module (CVFM). In addition, we utilize a bag of radicals as supervision signals for multi-task training to improve the ideographic structure perception of our model. Experiments show performance of the model with RE + CVFM + multi-task training is superior compared with the baseline on six Chinese STR datasets. In addition, we utilize a bag of radicals as supervision signals for multi-task training to improve the ideographic structure perception of our model. Experiments show performance of the model with RE + CVFM + multi-task training is superior compared with the baseline on six Chinese STR datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.