Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Novel Entropy-Maximizing TD3-based Reinforcement Learning for Automatic PID Tuning (2210.02381v1)

Published 5 Oct 2022 in eess.SY and cs.SY

Abstract: Proportional-integral-derivative (PID) controllers have been widely used in the process industry. However, the satisfactory control performance of a PID controller depends strongly on the tuning parameters. Conventional PID tuning methods require extensive knowledge of the system model, which is not always known especially in the case of complex dynamical systems. In contrast, reinforcement learning-based PID tuning has gained popularity since it can treat PID tuning as a black-box problem and deliver the optimal PID parameters without requiring explicit process models. In this paper, we present a novel entropy-maximizing twin-delayed deep deterministic policy gradient (EMTD3) method for automating the PID tuning. In the proposed method, an entropy-maximizing stochastic actor is employed at the beginning to encourage the exploration of the action space. Then a deterministic actor is deployed to focus on local exploitation and discover the optimal solution. The incorporation of the entropy-maximizing term can significantly improve the sample efficiency and assist in fast convergence to the global solution. Our proposed method is applied to the PID tuning of a second-order system to verify its effectiveness in improving the sample efficiency and discovering the optimal PID parameters compared to traditional TD3.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.