Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP (2210.02347v1)

Published 5 Oct 2022 in cs.CV

Abstract: We introduce a new method to efficiently create text-to-image models from a pre-trained CLIP and StyleGAN. It enables text driven sampling with an existing generative model without any external data or fine-tuning. This is achieved by training a diffusion model conditioned on CLIP embeddings to sample latent vectors of a pre-trained StyleGAN, which we call clip2latent. We leverage the alignment between CLIP's image and text embeddings to avoid the need for any text labelled data for training the conditional diffusion model. We demonstrate that clip2latent allows us to generate high-resolution (1024x1024 pixels) images based on text prompts with fast sampling, high image quality, and low training compute and data requirements. We also show that the use of the well studied StyleGAN architecture, without further fine-tuning, allows us to directly apply existing methods to control and modify the generated images adding a further layer of control to our text-to-image pipeline.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.