Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LDEdit: Towards Generalized Text Guided Image Manipulation via Latent Diffusion Models (2210.02249v1)

Published 5 Oct 2022 in cs.CV and cs.AI

Abstract: Research in vision-LLMs has seen rapid developments off-late, enabling natural language-based interfaces for image generation and manipulation. Many existing text guided manipulation techniques are restricted to specific classes of images, and often require fine-tuning to transfer to a different style or domain. Nevertheless, generic image manipulation using a single model with flexible text inputs is highly desirable. Recent work addresses this task by guiding generative models trained on the generic image datasets using pretrained vision-language encoders. While promising, this approach requires expensive optimization for each input. In this work, we propose an optimization-free method for the task of generic image manipulation from text prompts. Our approach exploits recent Latent Diffusion Models (LDM) for text to image generation to achieve zero-shot text guided manipulation. We employ a deterministic forward diffusion in a lower dimensional latent space, and the desired manipulation is achieved by simply providing the target text to condition the reverse diffusion process. We refer to our approach as LDEdit. We demonstrate the applicability of our method on semantic image manipulation and artistic style transfer. Our method can accomplish image manipulation on diverse domains and enables editing multiple attributes in a straightforward fashion. Extensive experiments demonstrate the benefit of our approach over competing baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: