New results of $0$-APN power functions over $\mathbb{F}_{2^n}$ (2210.02207v1)
Abstract: Partially APN functions attract researchers' particular interest recently. It plays an important role in studying APN functions. In this paper, based on the multivariate method and resultant elimination, we propose several new infinite classes of $0$-APN power functions over $\mathbb{F}{2n}$. Furthermore, two infinite classes of $0$-APN power functions $xd$ over $\mathbb{F}{2n}$ are characterized completely where $(2k-1)d\equiv 2m-1~({\rm mod}\ 2n-1)$ or $(2k+1)d\equiv 2m+1~({\rm mod}\ 2n-1)$ for some positive integers $n, m, k$. These infinite classes of $0$-APN power functions can explain some examples of exponents of Table $1$ in \cite{BKRS2020}.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.