Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

WUDA: Unsupervised Domain Adaptation Based on Weak Source Domain Labels (2210.02088v1)

Published 5 Oct 2022 in cs.CV

Abstract: Unsupervised domain adaptation (UDA) for semantic segmentation addresses the cross-domain problem with fine source domain labels. However, the acquisition of semantic labels has always been a difficult step, many scenarios only have weak labels (e.g. bounding boxes). For scenarios where weak supervision and cross-domain problems coexist, this paper defines a new task: unsupervised domain adaptation based on weak source domain labels (WUDA). To explore solutions for this task, this paper proposes two intuitive frameworks: 1) Perform weakly supervised semantic segmentation in the source domain, and then implement unsupervised domain adaptation; 2) Train an object detection model using source domain data, then detect objects in the target domain and implement weakly supervised semantic segmentation. We observe that the two frameworks behave differently when the datasets change. Therefore, we construct dataset pairs with a wide range of domain shifts and conduct extended experiments to analyze the impact of different domain shifts on the two frameworks. In addition, to measure domain shift, we apply the metric representation shift to urban landscape image segmentation for the first time. The source code and constructed datasets are available at \url{https://github.com/bupt-ai-cz/WUDA}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.