Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Jitter Does Matter: Adapting Gaze Estimation to New Domains (2210.02082v1)

Published 5 Oct 2022 in cs.CV

Abstract: Deep neural networks have demonstrated superior performance on appearance-based gaze estimation tasks. However, due to variations in person, illuminations, and background, performance degrades dramatically when applying the model to a new domain. In this paper, we discover an interesting gaze jitter phenomenon in cross-domain gaze estimation, i.e., the gaze predictions of two similar images can be severely deviated in target domain. This is closely related to cross-domain gaze estimation tasks, but surprisingly, it has not been noticed yet previously. Therefore, we innovatively propose to utilize the gaze jitter to analyze and optimize the gaze domain adaptation task. We find that the high-frequency component (HFC) is an important factor that leads to jitter. Based on this discovery, we add high-frequency components to input images using the adversarial attack and employ contrastive learning to encourage the model to obtain similar representations between original and perturbed data, which reduces the impacts of HFC. We evaluate the proposed method on four cross-domain gaze estimation tasks, and experimental results demonstrate that it significantly reduces the gaze jitter and improves the gaze estimation performance in target domains.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.