Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimizing Two-Truck Platooning with Deadlines (2210.01889v1)

Published 4 Oct 2022 in eess.SY and cs.SY

Abstract: We study a transportation problem where two heavy-duty trucks travel across the national highway from separate origins to destinations, subject to individual deadline constraints. Our objective is to minimize their total fuel consumption by jointly optimizing path planning, speed planning, and platooning configuration. Such a two-truck platooning problem is pervasive in practice yet challenging to solve due to hard deadline constraints and enormous platooning configurations to consider. We first leverage a unique problem structure to significantly simplify platooning optimization and present a novel formulation. We prove that the two-truck platooning problem is weakly NP-hard and admits a Fully Polynomial Time Approximation Scheme (FPTAS). The FPTAS can achieve a fuel consumption within a ratio of $(1+\epsilon)$ to the optimal (for any $\epsilon>0$) with a time complexity polynomial in the size of the transportation network and $1/\epsilon$. These results are in sharp contrast to the general multi-truck platooning problem, which is known to be APX-hard and repels any FPTAS. As the FPTAS still incurs excessive running time for large-scale cases, we design an efficient dual-subgradient algorithm for solving large-/national- scale instances. It is an iterative algorithm that always converges. We prove that each iteration only incurs polynomial-time complexity, albeit it requires solving an integer linear programming problem optimally. We characterize a condition under which the algorithm generates an optimal solution and derive a posterior performance bound when the condition is not met. Extensive simulations based on real-world traces show that our joint solution of path planning, speed planning, and platooning saves up to $24\%$ fuel as compared to baseline alternatives.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.