Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cooperative Self-Training for Multi-Target Adaptive Semantic Segmentation (2210.01578v1)

Published 4 Oct 2022 in cs.CV

Abstract: In this work we address multi-target domain adaptation (MTDA) in semantic segmentation, which consists in adapting a single model from an annotated source dataset to multiple unannotated target datasets that differ in their underlying data distributions. To address MTDA, we propose a self-training strategy that employs pseudo-labels to induce cooperation among multiple domain-specific classifiers. We employ feature stylization as an efficient way to generate image views that forms an integral part of self-training. Additionally, to prevent the network from overfitting to noisy pseudo-labels, we devise a rectification strategy that leverages the predictions from different classifiers to estimate the quality of pseudo-labels. Our extensive experiments on numerous settings, based on four different semantic segmentation datasets, validate the effectiveness of the proposed self-training strategy and show that our method outperforms state-of-the-art MTDA approaches. Code available at: https://github.com/Mael-zys/CoaST

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube