Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Transformer-based Subject Entity Detection in Wikipedia Listings (2210.01482v1)

Published 4 Oct 2022 in cs.IR

Abstract: In tasks like question answering or text summarisation, it is essential to have background knowledge about the relevant entities. The information about entities - in particular, about long-tail or emerging entities - in publicly available knowledge graphs like DBpedia or CaLiGraph is far from complete. In this paper, we present an approach that exploits the semi-structured nature of listings (like enumerations and tables) to identify the main entities of the listing items (i.e., of entries and rows). These entities, which we call subject entities, can be used to increase the coverage of knowledge graphs. Our approach uses a transformer network to identify subject entities at the token-level and surpasses an existing approach in terms of performance while being bound by fewer limitations. Due to a flexible input format, it is applicable to any kind of listing and is, unlike prior work, not dependent on entity boundaries as input. We demonstrate our approach by applying it to the complete Wikipedia corpus and extracting 40 million mentions of subject entities with an estimated precision of 71% and recall of 77%. The results are incorporated in the most recent version of CaLiGraph.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.