Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Improved High-Probability Regret for Adversarial Bandits with Time-Varying Feedback Graphs (2210.01376v2)

Published 4 Oct 2022 in cs.LG and stat.ML

Abstract: We study high-probability regret bounds for adversarial $K$-armed bandits with time-varying feedback graphs over $T$ rounds. For general strongly observable graphs, we develop an algorithm that achieves the optimal regret $\widetilde{\mathcal{O}}((\sum_{t=1}T\alpha_t){1/2}+\max_{t\in[T]}\alpha_t)$ with high probability, where $\alpha_t$ is the independence number of the feedback graph at round $t$. Compared to the best existing result [Neu, 2015] which only considers graphs with self-loops for all nodes, our result not only holds more generally, but importantly also removes any $\text{poly}(K)$ dependence that can be prohibitively large for applications such as contextual bandits. Furthermore, we also develop the first algorithm that achieves the optimal high-probability regret bound for weakly observable graphs, which even improves the best expected regret bound of [Alon et al., 2015] by removing the $\mathcal{O}(\sqrt{KT})$ term with a refined analysis. Our algorithms are based on the online mirror descent framework, but importantly with an innovative combination of several techniques. Notably, while earlier works use optimistic biased loss estimators for achieving high-probability bounds, we find it important to use a pessimistic one for nodes without self-loop in a strongly observable graph.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.