Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LOPR: Latent Occupancy PRediction using Generative Models (2210.01249v3)

Published 3 Oct 2022 in cs.RO and cs.CV

Abstract: Environment prediction frameworks are integral for autonomous vehicles, enabling safe navigation in dynamic environments. LiDAR generated occupancy grid maps (L-OGMs) offer a robust bird's eye-view scene representation that facilitates joint scene predictions without relying on manual labeling unlike commonly used trajectory prediction frameworks. Prior approaches have optimized deterministic L-OGM prediction architectures directly in grid cell space. While these methods have achieved some degree of success in prediction, they occasionally grapple with unrealistic and incorrect predictions. We claim that the quality and realism of the forecasted occupancy grids can be enhanced with the use of generative models. We propose a framework that decouples occupancy prediction into: representation learning and stochastic prediction within the learned latent space. Our approach allows for conditioning the model on other available sensor modalities such as RGB-cameras and high definition maps. We demonstrate that our approach achieves state-of-the-art performance and is readily transferable between different robotic platforms on the real-world NuScenes, Waymo Open, and a custom dataset we collected on an experimental vehicle platform.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.