Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral2Spectral: Image-spectral Similarity Assisted Spectral CT Deep Reconstruction without Reference (2210.01125v3)

Published 3 Oct 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Spectral computed tomography based on a photon-counting detector (PCD) attracts more and more attentions since it has the capability to provide more accurate identification and quantitative analysis for biomedical materials. The limited number of photons within narrow energy bins leads to imaging results of low signal-noise ratio. The existing supervised deep reconstruction networks for CT reconstruction are difficult to address these challenges because it is usually impossible to acquire noise-free clinical images with clear structures as references. In this paper, we propose an iterative deep reconstruction network to synergize unsupervised method and data priors into a unified framework, named as Spectral2Spectral. Our Spectral2Spectral employs an unsupervised deep training strategy to obtain high-quality images from noisy data in an end-to-end fashion. The structural similarity prior within image-spectral domain is refined as a regularization term to further constrain the network training. The weights of neural network are automatically updated to capture image features and structures within the iterative process. Three large-scale preclinical datasets experiments demonstrate that the Spectral2spectral reconstructs better image quality than other the state-of-the-art methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.