Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The (In)Effectiveness of Intermediate Task Training For Domain Adaptation and Cross-Lingual Transfer Learning (2210.01091v2)

Published 3 Oct 2022 in cs.CL

Abstract: Transfer learning from LLMs has emerged as a powerful technique to enable knowledge-based fine-tuning for a number of tasks, adaptation of models for different domains and even languages. However, it remains an open question, if and when transfer learning will work, i.e. leading to positive or negative transfer. In this paper, we analyze the knowledge transfer across three NLP tasks - text classification, sentimental analysis, and sentence similarity, using three LLMs - BERT, RoBERTa, and XLNet - and analyzing their performance, by fine-tuning on target datasets for domain and cross-lingual adaptation tasks, with and without an intermediate task training on a larger dataset. Our experiments showed that fine-tuning without an intermediate task training can lead to a better performance for most tasks, while more generalized tasks might necessitate a preceding intermediate task training step. We hope that this work will act as a guide on transfer learning to NLP practitioners.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.