Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Safeguard for Reinforcement Learning Using Safety Index Guided Gaussian Process Models (2210.01041v7)

Published 3 Oct 2022 in cs.RO

Abstract: Safety is one of the biggest concerns to applying reinforcement learning (RL) to the physical world. In its core part, it is challenging to ensure RL agents persistently satisfy a hard state constraint without white-box or black-box dynamics models. This paper presents an integrated model learning and safe control framework to safeguard any agent, where its dynamics are learned as Gaussian processes. The proposed theory provides (i) a novel method to construct an offline dataset for model learning that best achieves safety requirements; (ii) a parameterization rule for safety index to ensure the existence of safe control; (iii) a safety guarantee in terms of probabilistic forward invariance when the model is learned using the aforementioned dataset. Simulation results show that our framework guarantees almost zero safety violation on various continuous control tasks.

Citations (17)

Summary

We haven't generated a summary for this paper yet.