Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Budget-Aware Sequential Brick Assembly with Efficient Constraint Satisfaction (2210.01021v3)

Published 3 Oct 2022 in cs.LG

Abstract: We tackle the problem of sequential brick assembly with LEGO bricks to create combinatorial 3D structures. This problem is challenging since this brick assembly task encompasses the characteristics of combinatorial optimization problems. In particular, the number of assemblable structures increases exponentially as the number of bricks used increases. To solve this problem, we propose a new method to predict the scores of the next brick position by employing a U-shaped sparse 3D convolutional neural network. Along with the 3D convolutional network, a one-initialized brick-sized convolution filter is used to efficiently validate assembly constraints between bricks without training itself. By the nature of this one-initialized convolution filter, we can readily consider several different brick types by benefiting from modern implementation of convolution operations. To generate a novel structure, we devise a sampling strategy to determine the next brick position considering the satisfaction of assembly constraints. Moreover, our method is designed for either budget-free or budget-aware scenario where a budget may confine the number of bricks and their types. We demonstrate that our method successfully generates a variety of brick structures and outperforms existing methods with Bayesian optimization, deep graph generative model, and reinforcement learning.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube