Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learnable Acoustic Frontends in Bird Activity Detection (2210.00889v1)

Published 3 Oct 2022 in eess.AS

Abstract: Autonomous recording units and passive acoustic monitoring present minimally intrusive methods of collecting bioacoustics data. Combining this data with species agnostic bird activity detection systems enables the monitoring of activity levels of bird populations. Unfortunately, variability in ambient noise levels and subject distance contribute to difficulties in accurately detecting bird activity in recordings. The choice of acoustic frontend directly affects the impact these issues have on system performance. In this paper, we benchmark traditional fixed-parameter acoustic frontends against the new generation of learnable frontends on a wide-ranging bird audio detection task using data from the DCASE2018 BAD Challenge. We observe that Per-Channel Energy Normalization is the best overall performer, achieving an accuracy of 89.9%, and that in general learnable frontends significantly outperform traditional methods. We also identify challenges in learning filterbanks for bird audio.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.