Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Early or Late Fusion Matters: Efficient RGB-D Fusion in Vision Transformers for 3D Object Recognition (2210.00843v2)

Published 3 Oct 2022 in cs.CV and cs.RO

Abstract: The Vision Transformer (ViT) architecture has established its place in computer vision literature, however, training ViTs for RGB-D object recognition remains an understudied topic, viewed in recent literature only through the lens of multi-task pretraining in multiple vision modalities. Such approaches are often computationally intensive, relying on the scale of multiple pretraining datasets to align RGB with 3D information. In this work, we propose a simple yet strong recipe for transferring pretrained ViTs in RGB-D domains for 3D object recognition, focusing on fusing RGB and depth representations encoded jointly by the ViT. Compared to previous works in multimodal Transformers, the key challenge here is to use the attested flexibility of ViTs to capture cross-modal interactions at the downstream and not the pretraining stage. We explore which depth representation is better in terms of resulting accuracy and compare early and late fusion techniques for aligning the RGB and depth modalities within the ViT architecture. Experimental results in the Washington RGB-D Objects dataset (ROD) demonstrate that in such RGB -> RGB-D scenarios, late fusion techniques work better than most popularly employed early fusion. With our transfer baseline, fusion ViTs score up to 95.4% top-1 accuracy in ROD, achieving new state-of-the-art results in this benchmark. We further show the benefits of using our multimodal fusion baseline over unimodal feature extractors in a synthetic-to-real visual adaptation as well as in an open-ended lifelong learning scenario in the ROD benchmark, where our model outperforms previous works by a margin of >8%. Finally, we integrate our method with a robot framework and demonstrate how it can serve as a perception utility in an interactive robot learning scenario, both in simulation and with a real robot.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube