Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm (2210.00802v3)

Published 3 Oct 2022 in q-bio.QM, cs.LG, and q-bio.BM

Abstract: Drug synergy arises when the combined impact of two drugs exceeds the sum of their individual effects. While single-drug effects on cell lines are well-documented, the scarcity of data on drug synergy, considering the vast array of potential drug combinations, prompts a growing interest in computational approaches for predicting synergies in untested drug pairs. We introduce a Graph Neural Network (\textit{GNN}) based model for drug synergy prediction, which utilizes drug chemical structures and cell line gene expression data. We extract data from the largest available drug combination database (DrugComb) and generate multiple synergy scores (commonly used in the literature) to create seven datasets that serve as a reliable benchmark with high confidence. In contrast to conventional models relying on pre-computed chemical features, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs, providing superior performance in predicting drug synergies. Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: