Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A large sample theory for infinitesimal gradient boosting (2210.00736v2)

Published 3 Oct 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Infinitesimal gradient boosting (Dombry and Duchamps, 2021) is defined as the vanishing-learning-rate limit of the popular tree-based gradient boosting algorithm from machine learning. It is characterized as the solution of a nonlinear ordinary differential equation in a infinite-dimensional function space where the infinitesimal boosting operator driving the dynamics depends on the training sample. We consider the asymptotic behavior of the model in the large sample limit and prove its convergence to a deterministic process. This population limit is again characterized by a differential equation that depends on the population distribution. We explore some properties of this population limit: we prove that the dynamics makes the test error decrease and we consider its long time behavior.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.