Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A large sample theory for infinitesimal gradient boosting (2210.00736v2)

Published 3 Oct 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Infinitesimal gradient boosting (Dombry and Duchamps, 2021) is defined as the vanishing-learning-rate limit of the popular tree-based gradient boosting algorithm from machine learning. It is characterized as the solution of a nonlinear ordinary differential equation in a infinite-dimensional function space where the infinitesimal boosting operator driving the dynamics depends on the training sample. We consider the asymptotic behavior of the model in the large sample limit and prove its convergence to a deterministic process. This population limit is again characterized by a differential equation that depends on the population distribution. We explore some properties of this population limit: we prove that the dynamics makes the test error decrease and we consider its long time behavior.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.