Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Evolution is Still Good: Theoretical Analysis of Evolutionary Algorithms on General Cover Problems (2210.00672v1)

Published 3 Oct 2022 in cs.NE and cs.DM

Abstract: Theoretical studies on evolutionary algorithms have developed vigorously in recent years. Many such algorithms have theoretical guarantees in both running time and approximation ratio. Some approximation mechanism seems to be inherently embedded in many evolutionary algorithms. In this paper, we identify such a relation by proposing a unified analysis framework for a generalized simple multi-objective evolutionary algorithm (GSEMO), and apply it on a minimum weight general cover problem. For a wide range of problems (including the the minimum submodular cover problem in which the submodular function is real-valued, and the minimum connected dominating set problem for which the potential function is non-submodular), GSEMO yields asymptotically tight approximation ratios in expected polynomial time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube