Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evolution is Still Good: Theoretical Analysis of Evolutionary Algorithms on General Cover Problems (2210.00672v1)

Published 3 Oct 2022 in cs.NE and cs.DM

Abstract: Theoretical studies on evolutionary algorithms have developed vigorously in recent years. Many such algorithms have theoretical guarantees in both running time and approximation ratio. Some approximation mechanism seems to be inherently embedded in many evolutionary algorithms. In this paper, we identify such a relation by proposing a unified analysis framework for a generalized simple multi-objective evolutionary algorithm (GSEMO), and apply it on a minimum weight general cover problem. For a wide range of problems (including the the minimum submodular cover problem in which the submodular function is real-valued, and the minimum connected dominating set problem for which the potential function is non-submodular), GSEMO yields asymptotically tight approximation ratios in expected polynomial time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.