Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis (2210.00557v1)

Published 2 Oct 2022 in cs.LG

Abstract: Adversarial Training (AT) has been demonstrated as one of the most effective methods against adversarial examples. While most existing works focus on AT with a single type of perturbation e.g., the $\ell_\infty$ attacks), DNNs are facing threats from different types of adversarial examples. Therefore, adversarial training for multiple perturbations (ATMP) is proposed to generalize the adversarial robustness over different perturbation types (in $\ell_1$, $\ell_2$, and $\ell_\infty$ norm-bounded perturbations). However, the resulting model exhibits trade-off between different attacks. Meanwhile, there is no theoretical analysis of ATMP, limiting its further development. In this paper, we first provide the smoothness analysis of ATMP and show that $\ell_1$, $\ell_2$, and $\ell_\infty$ adversaries give different contributions to the smoothness of the loss function of ATMP. Based on this, we develop the stability-based excess risk bounds and propose adaptive smoothness-weighted adversarial training for multiple perturbations. Theoretically, our algorithm yields better bounds. Empirically, our experiments on CIFAR10 and CIFAR100 achieve the state-of-the-art performance against the mixture of multiple perturbations attacks.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.