Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Citation Trajectory Prediction via Publication Influence Representation Using Temporal Knowledge Graph (2210.00450v1)

Published 2 Oct 2022 in cs.AI and cs.SI

Abstract: Predicting the impact of publications in science and technology has become an important research area, which is useful in various real world scenarios such as technology investment, research direction selection, and technology policymaking. Citation trajectory prediction is one of the most popular tasks in this area. Existing approaches mainly rely on mining temporal and graph data from academic articles. Some recent methods are capable of handling cold-start prediction by aggregating metadata features of new publications. However, the implicit factors causing citations and the richer information from handling temporal and attribute features still need to be explored. In this paper, we propose CTPIR, a new citation trajectory prediction framework that is able to represent the influence (the momentum of citation) of either new or existing publications using the history information of all their attributes. Our framework is composed of three modules: difference-preserved graph embedding, fine-grained influence representation, and learning-based trajectory calculation. To test the effectiveness of our framework in more situations, we collect and construct a new temporal knowledge graph dataset from the real world, named AIPatent, which stems from global patents in the field of artificial intelligence. Experiments are conducted on both the APS academic dataset and our contributed AIPatent dataset. The results demonstrate the strengths of our approach in the citation trajectory prediction task.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.