Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An adaptive superconvergent finite element method based on local residual minimization (2210.00390v1)

Published 1 Oct 2022 in math.NA and cs.NA

Abstract: We introduce an adaptive superconvergent finite element method for a class of mixed formulations to solve partial differential equations involving a diffusion term. It combines a superconvergent postprocessing technique for the primal variable with an adaptive finite element method via residual minimization. Such a residual minimization procedure is performed on a local postprocessing scheme, commonly used in the context of mixed finite element methods. Given the local nature of that approach, the underlying saddle point problems associated with residual minimizations can be solved with minimal computational effort. We propose and study a posteriori error estimators, including the built-in residual representative associated with residual minimization schemes; and an improved estimator which adds, on the one hand, a residual term quantifying the mismatch between discrete fluxes and, on the other hand, the interelement jumps of the postprocessed solution. We present numerical experiments in two dimensions using Brezzi-Douglas-Marini elements as input for our methodology. The experiments perfectly fit our key theoretical findings and suggest that our estimates are sharp.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.