Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ML for Location Prediction Using RSSI On WiFi 2.4 GHZ Frequency Band (2210.00270v1)

Published 1 Oct 2022 in cs.CR

Abstract: For decades, the determination of an objects location has been implemented utilizing different technologies. Despite GPS (Global Positioning System) provides a scalable efficient and cost effective location services however the satellite emitted signals cannot be exploited indoor to effectively determine the location. In contrast to GPS which is a cost effective localization technology for outdoor locations several technologies have been studied for indoor localization. These include Wireless Fidelity (Wi-Fi) Bluetooth Low Energy (BLE) and Received Signal Strength Indicator (RSSI) etc. This paper presents an enhanced method of using RSSI as a mean to determine an objects location by applying some Machine Learning (ML) concepts. The binary classification is defined by considering the adjacency of the coordinates denoting objects locations. The proposed features were tested empirically via multiple classifiers that achieved a maximum of 96 percent accuracy.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.