Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Quantum Agnostic Improper Learning of Decision Trees (2210.00212v3)

Published 1 Oct 2022 in quant-ph and cs.LG

Abstract: The agnostic setting is the hardest generalization of the PAC model since it is akin to learning with adversarial noise. In this paper, we give a poly$(n,t,{\frac{1}{\varepsilon}})$ quantum algorithm for learning size $t$ decision trees with uniform marginal over instances, in the agnostic setting, without membership queries. Our algorithm is the first algorithm (classical or quantum) for learning decision trees in polynomial time without membership queries. We show how to construct a quantum agnostic weak learner by designing a quantum version of the classical Goldreich-Levin algorithm that works with strongly biased function oracles. We show how to quantize the agnostic boosting algorithm by Kalai and Kanade (NIPS 2009) to obtain the first efficient quantum agnostic boosting algorithm. Our quantum boosting algorithm has a polynomial improvement in the dependence of the bias of the weak learner over all adaptive quantum boosting algorithms while retaining the standard speedup in the VC dimension over classical boosting algorithms. We then use our quantum boosting algorithm to boost the weak quantum learner we obtained in the previous step to obtain a quantum agnostic learner for decision trees. Using the above framework, we also give quantum decision tree learning algorithms for both the realizable setting and random classification noise model, again without membership queries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.