Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

D-Align: Dual Query Co-attention Network for 3D Object Detection Based on Multi-frame Point Cloud Sequence (2210.00087v1)

Published 30 Sep 2022 in cs.CV

Abstract: LiDAR sensors are widely used for 3D object detection in various mobile robotics applications. LiDAR sensors continuously generate point cloud data in real-time. Conventional 3D object detectors detect objects using a set of points acquired over a fixed duration. However, recent studies have shown that the performance of object detection can be further enhanced by utilizing spatio-temporal information obtained from point cloud sequences. In this paper, we propose a new 3D object detector, named D-Align, which can effectively produce strong bird's-eye-view (BEV) features by aligning and aggregating the features obtained from a sequence of point sets. The proposed method includes a novel dual-query co-attention network that uses two types of queries, including target query set (T-QS) and support query set (S-QS), to update the features of target and support frames, respectively. D-Align aligns S-QS to T-QS based on the temporal context features extracted from the adjacent feature maps and then aggregates S-QS with T-QS using a gated attention mechanism. The dual queries are updated through multiple attention layers to progressively enhance the target frame features used to produce the detection results. Our experiments on the nuScenes dataset show that the proposed D-Align method greatly improved the performance of a single frame-based baseline method and significantly outperformed the latest 3D object detectors.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.