Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Offset-value coding in database query processing (2210.00034v3)

Published 30 Sep 2022 in cs.DB

Abstract: Recent work shows how offset-value coding speeds up database query execution, not only sorting but also duplicate removal and grouping (aggregation) in sorted streams, order-preserving exchange (shuffle), merge join, and more. It already saves thousands of CPUs in Google's Napa and F1 Query systems, e.g., in grouping algorithms and in log-structured merge-forests. In order to realize the full benefit of interesting orderings, however, query execution algorithms must not only consume and exploit offset-value codes but also produce offset-value codes for the next operator in the pipeline. Our research has sought ways to produce offset-value codes without comparing successive output rows one-by-one, column-by-column. This short paper introduces a new theorem and, based on its proof and a simple corollary, describes in detail how order-preserving algorithms (from filter to merge join and even shuffle) can compute offset-value codes for their outputs. These computations are surprisingly simple and very efficient.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)