Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Individual Privacy Accounting with Gaussian Differential Privacy (2209.15596v2)

Published 30 Sep 2022 in cs.CR, cs.LG, and stat.ML

Abstract: Individual privacy accounting enables bounding differential privacy (DP) loss individually for each participant involved in the analysis. This can be informative as often the individual privacy losses are considerably smaller than those indicated by the DP bounds that are based on considering worst-case bounds at each data access. In order to account for the individual privacy losses in a principled manner, we need a privacy accountant for adaptive compositions of randomised mechanisms, where the loss incurred at a given data access is allowed to be smaller than the worst-case loss. This kind of analysis has been carried out for the R\'enyi differential privacy (RDP) by Feldman and Zrnic (2021), however not yet for the so-called optimal privacy accountants. We make first steps in this direction by providing a careful analysis using the Gaussian differential privacy which gives optimal bounds for the Gaussian mechanism, one of the most versatile DP mechanisms. This approach is based on determining a certain supermartingale for the hockey-stick divergence and on extending the R\'enyi divergence-based fully adaptive composition results by Feldman and Zrnic. We also consider measuring the individual $(\varepsilon,\delta)$-privacy losses using the so-called privacy loss distributions. With the help of the Blackwell theorem, we can then make use of the RDP analysis to construct an approximative individual $(\varepsilon,\delta)$-accountant.

Citations (17)

Summary

We haven't generated a summary for this paper yet.