Rethinking the Learning Paradigm for Facial Expression Recognition (2209.15402v2)
Abstract: Due to the subjective crowdsourcing annotations and the inherent inter-class similarity of facial expressions, the real-world Facial Expression Recognition (FER) datasets usually exhibit ambiguous annotation. To simplify the learning paradigm, most previous methods convert ambiguous annotation results into precise one-hot annotations and train FER models in an end-to-end supervised manner. In this paper, we rethink the existing training paradigm and propose that it is better to use weakly supervised strategies to train FER models with original ambiguous annotation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.