Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear Convergence for Natural Policy Gradient with Log-linear Policy Parametrization (2209.15382v2)

Published 30 Sep 2022 in cs.LG, math.OC, math.ST, and stat.TH

Abstract: We analyze the convergence rate of the unregularized natural policy gradient algorithm with log-linear policy parametrizations in infinite-horizon discounted Markov decision processes. In the deterministic case, when the Q-value is known and can be approximated by a linear combination of a known feature function up to a bias error, we show that a geometrically-increasing step size yields a linear convergence rate towards an optimal policy. We then consider the sample-based case, when the best representation of the Q- value function among linear combinations of a known feature function is known up to an estimation error. In this setting, we show that the algorithm enjoys the same linear guarantees as in the deterministic case up to an error term that depends on the estimation error, the bias error, and the condition number of the feature covariance matrix. Our results build upon the general framework of policy mirror descent and extend previous findings for the softmax tabular parametrization to the log-linear policy class.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.