Papers
Topics
Authors
Recent
2000 character limit reached

Efficient computation of the Knowledge Gradient for Bayesian Optimization (2209.15367v1)

Published 30 Sep 2022 in cs.LG and stat.ML

Abstract: Bayesian optimization is a powerful collection of methods for optimizing stochastic expensive black box functions. One key component of a Bayesian optimization algorithm is the acquisition function that determines which solution should be evaluated in every iteration. A popular and very effective choice is the Knowledge Gradient acquisition function, however there is no analytical way to compute it. Several different implementations make different approximations. In this paper, we review and compare the spectrum of Knowledge Gradient implementations and propose One-shot Hybrid KG, a new approach that combines several of the previously proposed ideas and is cheap to compute as well as powerful and efficient. We prove the new method preserves theoretical properties of previous methods and empirically show the drastically reduced computational overhead with equal or improved performance. All experiments are implemented in BOTorch and code is available on github.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.