Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SCI: A Spectrum Concentrated Implicit Neural Compression for Biomedical Data (2209.15180v5)

Published 30 Sep 2022 in eess.IV and cs.CV

Abstract: Massive collection and explosive growth of biomedical data, demands effective compression for efficient storage, transmission and sharing. Readily available visual data compression techniques have been studied extensively but tailored for natural images/videos, and thus show limited performance on biomedical data which are of different features and larger diversity. Emerging implicit neural representation (INR) is gaining momentum and demonstrates high promise for fitting diverse visual data in target-data-specific manner, but a general compression scheme covering diverse biomedical data is so far absent. To address this issue, we firstly derive a mathematical explanation for INR's spectrum concentration property and an analytical insight on the design of INR based compressor. Further, we propose a Spectrum Concentrated Implicit neural compression (SCI) which adaptively partitions the complex biomedical data into blocks matching INR's concentrated spectrum envelop, and design a funnel shaped neural network capable of representing each block with a small number of parameters. Based on this design, we conduct compression via optimization under given budget and allocate the available parameters with high representation accuracy. The experiments show SCI's superior performance to state-of-the-art methods including commercial compressors, data-driven ones, and INR based counterparts on diverse biomedical data. The source code can be found at https://github.com/RichealYoung/ImplicitNeuralCompression.git.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com