Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An empirical study of weakly supervised audio tagging embeddings for general audio representations (2209.15167v1)

Published 30 Sep 2022 in cs.SD and eess.AS

Abstract: We study the usability of pre-trained weakly supervised audio tagging (AT) models as feature extractors for general audio representations. We mainly analyze the feasibility of transferring those embeddings to other tasks within the speech and sound domains. Specifically, we benchmark weakly supervised pre-trained models (MobileNetV2 and EfficientNet-B0) against modern self-supervised learning methods (BYOL-A) as feature extractors. Fourteen downstream tasks are used for evaluation ranging from music instrument classification to language classification. Our results indicate that AT pre-trained models are an excellent transfer learning choice for music, event, and emotion recognition tasks. Further, finetuning AT models can also benefit speech-related tasks such as keyword spotting and intent classification.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube