Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Few-shot Text Classification with Dual Contrastive Consistency (2209.15069v1)

Published 29 Sep 2022 in cs.CL, cs.AI, and cs.LG

Abstract: In this paper, we explore how to utilize pre-trained LLM to perform few-shot text classification where only a few annotated examples are given for each class. Since using traditional cross-entropy loss to fine-tune LLM under this scenario causes serious overfitting and leads to sub-optimal generalization of model, we adopt supervised contrastive learning on few labeled data and consistency-regularization on vast unlabeled data. Moreover, we propose a novel contrastive consistency to further boost model performance and refine sentence representation. After conducting extensive experiments on four datasets, we demonstrate that our model (FTCC) can outperform state-of-the-art methods and has better robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.