Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Start Small: Training Controllable Game Level Generators without Training Data by Learning at Multiple Sizes (2209.15052v2)

Published 29 Sep 2022 in cs.LG

Abstract: A level generator is a tool that generates game levels from noise. Training a generator without a dataset suffers from feedback sparsity, since it is unlikely to generate a playable level via random exploration. A common solution is shaped rewards, which guides the generator to achieve subgoals towards level playability, but they consume effort to design and require game-specific domain knowledge. This paper proposes a novel approach to train generators without datasets or shaped rewards by learning at multiple level sizes starting from small sizes and up to the desired sizes. The denser feedback at small sizes negates the need for shaped rewards. Additionally, the generators learn to build levels at various sizes, including sizes they were not trained for. We apply our approach to train recurrent auto-regressive generative flow networks (GFlowNets) for controllable level generation. We also adapt diversity sampling to be compatible with GFlowNets. The results show that our generators create diverse playable levels at various sizes for Sokoban, Zelda, and Danger Dave. When compared with controllable reinforcement learning level generators for Sokoban, the results show that our generators achieve better controllability and competitive diversity, while being 9x faster at training and level generation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.