Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimization of Functions Given in the Tensor Train Format (2209.14808v1)

Published 29 Sep 2022 in math.NA, cs.NA, and math.OC

Abstract: Tensor train (TT) format is a common approach for computationally efficient work with multidimensional arrays, vectors, matrices, and discretized functions in a wide range of applications, including computational mathematics and machine learning. In this work, we propose a new algorithm for TT-tensor optimization, which leads to very accurate approximations for the minimum and maximum tensor element. The method consists in sequential tensor multiplications of the TT-cores with an intelligent selection of candidates for the optimum. We propose the probabilistic interpretation of the method, and make estimates on its complexity and convergence. We perform extensive numerical experiments with random tensors and various multivariable benchmark functions with the number of input dimensions up to $100$. Our approach generates a solution close to the exact optimum for all model problems, while the running time is no more than $50$ seconds on a regular laptop.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.