Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Multiagent Framework for the Asynchronous and Collaborative Extension of Multitask ML Systems (2209.14745v2)

Published 29 Sep 2022 in cs.LG, cs.AI, cs.CV, cs.MA, and cs.NE

Abstract: The traditional ML development methodology does not enable a large number of contributors, each with distinct objectives, to work collectively on the creation and extension of a shared intelligent system. Enabling such a collaborative methodology can accelerate the rate of innovation, increase ML technologies accessibility and enable the emergence of novel capabilities. We believe that this novel methodology for ML development can be demonstrated through a modularized representation of ML models and the definition of novel abstractions allowing to implement and execute diverse methods for the asynchronous use and extension of modular intelligent systems. We present a multiagent framework for the collaborative and asynchronous extension of dynamic large-scale multitask systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Youtube Logo Streamline Icon: https://streamlinehq.com