Low-Resolution Action Recognition for Tiny Actions Challenge (2209.14711v1)
Abstract: Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often recorded at a distance, and appear in a small resolution without much discriminative clue. Second, these activities are naturally distributed in a long-tailed way. It is hard to alleviate data bias for such heavy category imbalance. To tackle these problems, we propose a comprehensive recognition solution in this paper. First, we train video backbones with data balance, in order to alleviate overfitting in the challenge benchmark. Second, we design a dual-resolution distillation framework, which can effectively guide low-resolution action recognition by super-resolution knowledge. Finally, we apply model en-semble with post-processing, which can further boost per-formance on the long-tailed categories. Our solution ranks Top-1 on the leaderboard.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.