Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Increasing Model Generalizability for Unsupervised Domain Adaptation (2209.14644v1)

Published 29 Sep 2022 in cs.LG and cs.CV

Abstract: A dominant approach for addressing unsupervised domain adaptation is to map data points for the source and the target domains into an embedding space which is modeled as the output-space of a shared deep encoder. The encoder is trained to make the embedding space domain-agnostic to make a source-trained classifier generalizable on the target domain. A secondary mechanism to improve UDA performance further is to make the source domain distribution more compact to improve model generalizability. We demonstrate that increasing the interclass margins in the embedding space can help to develop a UDA algorithm with improved performance. We estimate the internally learned multi-modal distribution for the source domain, learned as a result of pretraining, and use it to increase the interclass class separation in the source domain to reduce the effect of domain shift. We demonstrate that using our approach leads to improved model generalizability on four standard benchmark UDA image classification datasets and compares favorably against exiting methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)