Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Parameterized Quantum Circuits with Quantum Kernels for Machine Learning: A Hybrid Quantum-Classical Approach (2209.14449v2)

Published 28 Sep 2022 in quant-ph and cs.LG

Abstract: Quantum machine learning (QML) is the use of quantum computing for the computation of machine learning algorithms. With the prevalence and importance of classical data, a hybrid quantum-classical approach to QML is called for. Parameterized Quantum Circuits (PQCs), and particularly Quantum Kernel PQCs, are generally used in the hybrid approach to QML. In this paper we discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels. We conclude that quantum kernels with hybrid kernel methods, a.k.a. quantum kernel methods, offer distinct advantages as a hybrid approach to QML. Not only do they apply to Noisy Intermediate-Scale Quantum (NISQ) devices, but they also can be used to solve all types of machine learning problems including regression, classification, clustering, and dimension reduction. Furthermore, beyond quantum utility, quantum advantage can be attained if the quantum kernels, i.e., the quantum feature encodings, are classically intractable.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)