Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Downstream Datasets Make Surprisingly Good Pretraining Corpora (2209.14389v2)

Published 28 Sep 2022 in cs.CL and cs.LG

Abstract: For most natural language processing tasks, the dominant practice is to finetune large pretrained transformer models (e.g., BERT) using smaller downstream datasets. Despite the success of this approach, it remains unclear to what extent these gains are attributable to the massive background corpora employed for pretraining versus to the pretraining objectives themselves. This paper introduces a large-scale study of self-pretraining, where the same (downstream) training data is used for both pretraining and finetuning. In experiments addressing both ELECTRA and RoBERTa models and 10 distinct downstream classification datasets, we observe that self-pretraining rivals standard pretraining on the BookWiki corpus (despite using around $10\times$--$500\times$ less data), outperforming the latter on $7$ and $5$ datasets, respectively. Surprisingly, these task-specific pretrained models often perform well on other tasks, including the GLUE benchmark. Besides classification tasks, self-pretraining also provides benefits on structured output prediction tasks such as span based question answering and commonsense inference, often providing more than $50\%$ of the performance boosts provided by pretraining on the BookWiki corpus. Our results hint that in many scenarios, performance gains attributable to pretraining are driven primarily by the pretraining objective itself and are not always attributable to the use of external pretraining data in massive amounts. These findings are especially relevant in light of concerns about intellectual property and offensive content in web-scale pretraining data.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com