The Change You Want to See (2209.14341v1)
Abstract: We live in a dynamic world where things change all the time. Given two images of the same scene, being able to automatically detect the changes in them has practical applications in a variety of domains. In this paper, we tackle the change detection problem with the goal of detecting "object-level" changes in an image pair despite differences in their viewpoint and illumination. To this end, we make the following four contributions: (i) we propose a scalable methodology for obtaining a large-scale change detection training dataset by leveraging existing object segmentation benchmarks; (ii) we introduce a co-attention based novel architecture that is able to implicitly determine correspondences between an image pair and find changes in the form of bounding box predictions; (iii) we contribute four evaluation datasets that cover a variety of domains and transformations, including synthetic image changes, real surveillance images of a 3D scene, and synthetic 3D scenes with camera motion; (iv) we evaluate our model on these four datasets and demonstrate zero-shot and beyond training transformation generalization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.