Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Toward Certification of Machine-Learning Systems for Low Criticality Airborne Applications (2209.13975v1)

Published 28 Sep 2022 in cs.LG and cs.AI

Abstract: The exceptional progress in the field of ML in recent years has attracted a lot of interest in using this technology in aviation. Possible airborne applications of ML include safety-critical functions, which must be developed in compliance with rigorous certification standards of the aviation industry. Current certification standards for the aviation industry were developed prior to the ML renaissance without taking specifics of ML technology into account. There are some fundamental incompatibilities between traditional design assurance approaches and certain aspects of ML-based systems. In this paper, we analyze the current airborne certification standards and show that all objectives of the standards can be achieved for a low-criticality ML-based system if certain assumptions about ML development workflow are applied.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.