Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Near-Optimal Adaptive Policies for Serving Stochastically Departing Customers (2209.13878v1)

Published 28 Sep 2022 in cs.DS and math.OC

Abstract: We consider a multi-stage stochastic optimization problem originally introduced by Cygan et al. (2013), studying how a single server should prioritize stochastically departing customers. In this setting, our objective is to determine an adaptive service policy that maximizes the expected total reward collected along a discrete planning horizon, in the presence of customers who are independently departing between one stage and the next with known stationary probabilities. In spite of its deceiving structural simplicity, we are unaware of non-trivial results regarding the rigorous design of optimal or truly near-optimal policies at present time. Our main contribution resides in proposing a quasi-polynomial-time approximation scheme for adaptively serving impatient customers. Specifically, letting $n$ be the number of underlying customers, our algorithm identifies in $O( n{ O_{ \epsilon }( \log2 n ) } )$ time an adaptive service policy whose expected reward is within factor $1 - \epsilon$ of the optimal adaptive reward. Our method for deriving this approximation scheme synthesizes various stochastic analyses in order to investigate how the adaptive optimum is affected by alteration to several instance parameters, including the reward values, the departure probabilities, and the collection of customers itself.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.