Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully Exploiting Self-Attention (2209.13802v2)

Published 28 Sep 2022 in cs.CV

Abstract: Vision transformer has emerged as a new paradigm in computer vision, showing excellent performance while accompanied by expensive computational cost. Image token pruning is one of the main approaches for ViT compression, due to the facts that the complexity is quadratic with respect to the token number, and many tokens containing only background regions do not truly contribute to the final prediction. Existing works either rely on additional modules to score the importance of individual tokens, or implement a fixed ratio pruning strategy for different input instances. In this work, we propose an adaptive sparse token pruning framework with a minimal cost. Specifically, we firstly propose an inexpensive attention head importance weighted class attention scoring mechanism. Then, learnable parameters are inserted as thresholds to distinguish informative tokens from unimportant ones. By comparing token attention scores and thresholds, we can discard useless tokens hierarchically and thus accelerate inference. The learnable thresholds are optimized in budget-aware training to balance accuracy and complexity, performing the corresponding pruning configurations for different input instances. Extensive experiments demonstrate the effectiveness of our approach. Our method improves the throughput of DeiT-S by 50% and brings only 0.2% drop in top-1 accuracy, which achieves a better trade-off between accuracy and latency than the previous methods.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube