Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybrid Stochastic Synapses Enabled by Scaled Ferroelectric Field-effect Transistors (2209.13685v3)

Published 27 Sep 2022 in cs.ET

Abstract: Achieving brain-like density and performance in neuromorphic computers necessitates scaling down the size of nanodevices emulating neuro-synaptic functionalities. However, scaling nanodevices results in reduction of programming resolution and emergence of stochastic non-idealities. While prior work has mainly focused on binary transitions, in this work we leverage the stochastic switching of a three-state ferroelectric field effect transistor (FeFET) to implement a long-term and short-term 2-tier stochastic synaptic memory with a single device. Experimental measurements are performed on a scaled 28nm high-$k$ metal gate technology-based device to develop a probabilistic model of the hybrid stochastic synapse. In addition to the advantage of ultra-low programming energies afforded by scaling, our hardware-algorithm co-design analysis reveals the efficacy of the 2-tier memory in comparison to binary stochastic synapses in on-chip learning tasks -- paving the way for algorithms exploiting multi-state devices with probabilistic transitions beyond deterministic ones.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.