Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning-Based Dimensionality Reduction for Computing Compact and Effective Local Feature Descriptors (2209.13586v1)

Published 27 Sep 2022 in cs.CV and cs.RO

Abstract: A distinctive representation of image patches in form of features is a key component of many computer vision and robotics tasks, such as image matching, image retrieval, and visual localization. State-of-the-art descriptors, from hand-crafted descriptors such as SIFT to learned ones such as HardNet, are usually high dimensional; 128 dimensions or even more. The higher the dimensionality, the larger the memory consumption and computational time for approaches using such descriptors. In this paper, we investigate multi-layer perceptrons (MLPs) to extract low-dimensional but high-quality descriptors. We thoroughly analyze our method in unsupervised, self-supervised, and supervised settings, and evaluate the dimensionality reduction results on four representative descriptors. We consider different applications, including visual localization, patch verification, image matching and retrieval. The experiments show that our lightweight MLPs achieve better dimensionality reduction than PCA. The lower-dimensional descriptors generated by our approach outperform the original higher-dimensional descriptors in downstream tasks, especially for the hand-crafted ones. The code will be available at https://github.com/PRBonn/descriptor-dr.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.