Papers
Topics
Authors
Recent
2000 character limit reached

OmniNeRF: Hybriding Omnidirectional Distance and Radiance fields for Neural Surface Reconstruction (2209.13433v1)

Published 27 Sep 2022 in cs.CV

Abstract: 3D reconstruction from images has wide applications in Virtual Reality and Automatic Driving, where the precision requirement is very high. Ground-breaking research in the neural radiance field (NeRF) by utilizing Multi-Layer Perceptions has dramatically improved the representation quality of 3D objects. Some later studies improved NeRF by building truncated signed distance fields (TSDFs) but still suffer from the problem of blurred surfaces in 3D reconstruction. In this work, this surface ambiguity is addressed by proposing a novel way of 3D shape representation, OmniNeRF. It is based on training a hybrid implicit field of Omni-directional Distance Field (ODF) and neural radiance field, replacing the apparent density in NeRF with omnidirectional information. Moreover, we introduce additional supervision on the depth map to further improve reconstruction quality. The proposed method has been proven to effectively deal with NeRF defects at the edges of the surface reconstruction, providing higher quality 3D scene reconstruction results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.